Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702558

RESUMEN

Multiscale agent-based modeling frameworks have recently emerged as promising mechanobiological models to capture the interplay between biomechanical forces, cellular behavior, and molecular pathways underlying restenosis following percutaneous transluminal angioplasty (PTA). However, their applications are mainly limited to idealized scenarios. Herein, a multiscale agent-based modeling framework for investigating restenosis following PTA in a patient-specific superficial femoral artery (SFA) is proposed. The framework replicates the 2-month arterial wall remodeling in response to the PTA-induced injury and altered hemodynamics, by combining three modules: (i) the PTA module, consisting in a finite element structural mechanics simulation of PTA, featuring anisotropic hyperelastic material models coupled with a damage formulation for fibrous soft tissue and the element deletion strategy, providing the arterial wall damage and post-intervention configuration, (ii) the hemodynamics module, quantifying the post-intervention hemodynamics through computational fluid dynamics simulations, and (iii) the tissue remodeling module, based on an agent-based model of cellular dynamics. Two scenarios were explored, considering balloon expansion diameters of 5.2 and 6.2 mm. The framework captured PTA-induced arterial tissue lacerations and the post-PTA arterial wall remodeling. This remodeling process involved rapid cellular migration to the PTA-damaged regions, exacerbated cell proliferation and extracellular matrix production, resulting in lumen area reduction up to 1-month follow-up. After this initial reduction, the growth stabilized, due to the resolution of the inflammatory state and changes in hemodynamics. The similarity of the obtained results to clinical observations in treated SFAs suggests the potential of the framework for capturing patient-specific mechanobiological events occurring after PTA intervention.

2.
Cells ; 13(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667279

RESUMEN

Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/ß-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.


Asunto(s)
Adhesiones Focales , Mecanotransducción Celular , Miocitos Cardíacos , Adhesiones Focales/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Animales , Diferenciación Celular , Matriz Extracelular/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38255814

RESUMEN

Matrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine. Given the tissue-specificity and the youthfulness of research on MBVs, until now they have only been isolated from a few ECM sources. Therefore, the objective of this research was to isolate and identify the presence of MBVs in decellularised bovine pericardium ECM and to characterise their protein content, which is expected to play a major role in their biological potential. The results showed that nanovesicles, corresponding to the definition of recently described MBVs, could be isolated from decellularised bovine pericardium ECM. Moreover, these MBVs were composed of numerous proteins and cytokines, thus preserving a highly potential biological effect. Overall, this research shows that bovine pericardium MBVs show a rich and tissue-specific biological potential.


Asunto(s)
Materiales Biocompatibles , Medicina Regenerativa , Bovinos , Animales , Citocinas , Proteínas de la Matriz Extracelular , Pericardio
4.
Front Bioeng Biotechnol ; 11: 1285565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053846

RESUMEN

A previously developed cellularized collagen-based vascular wall model showed promising results in mimicking the biological properties of a native vessel but lacked appropriate mechanical properties. In this work, we aim to improve this collagen-based model by reinforcing it using a tubular polymeric (reinforcement) scaffold. The polymeric reinforcements were fabricated exploiting commercial poly (ε-caprolactone) (PCL), a polymer already used to fabricate other FDA-approved and commercially available devices serving medical applications, through 1) solution electrospinning (SES), 2) 3D printing (3DP) and 3) melt electrowriting (MEW). The non-reinforced cellularized collagen-based model was used as a reference (COL). The effect of the scaffold's architecture on the resulting mechanical and biological properties of the reinforced collagen-based model were evaluated. SEM imaging showed the differences in scaffolds' architecture (fiber alignment, fiber diameter and pore size) at both the micro- and the macrolevel. The polymeric scaffold led to significantly improved mechanical properties for the reinforced collagen-based model (initial elastic moduli of 382.05 ± 132.01 kPa, 100.59 ± 31.15 kPa and 245.78 ± 33.54 kPa, respectively for SES, 3DP and MEW at day 7 of maturation) compared to the non-reinforced collagen-based model (16.63 ± 5.69 kPa). Moreover, on day 7, the developed collagen gels showed stresses (for strains between 20% and 55%) in the range of [5-15] kPa for COL, [80-350] kPa for SES, [20-70] kPa for 3DP and [100-190] kPa for MEW. In addition to the effect on the resulting mechanical properties, the polymeric tubes' architecture influenced cell behavior, in terms of proliferation and attachment, along with collagen gel compaction and extracellular matrix protein expression. The MEW reinforcement resulted in a collagen gel compaction similar to the COL reference, whereas 3DP and SES led to thinner and longer collagen gels. Overall, it can be concluded that 1) the selected processing technique influences the scaffolds' architecture, which in turn influences the resulting mechanical and biological properties, and 2) the incorporation of a polymeric reinforcement leads to mechanical properties closely matching those of native arteries.

5.
Biomolecules ; 13(9)2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37759789

RESUMEN

The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.


Asunto(s)
Prótesis Vascular , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles
6.
Front Pharmacol ; 14: 1205651, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771728

RESUMEN

Bitter taste receptors are involved not only in taste perception but in various physiological functions as their anatomical location is not restricted to the gustatory system. We previously demonstrated expression and activity of the subtype hTAS2R46 in human airway smooth muscle and broncho-epithelial cells, and here we show its expression and functionality in human skeletal muscle cells. Three different cellular models were used: micro-dissected human skeletal tissues, human myoblasts/myotubes and human skeletal muscle cells differentiated from urine stem cells of healthy donors. We used qPCR, immunohistochemistry and immunofluorescence analysis to evaluate gene and protein hTAS2R46 expression. In order to explore receptor activity, cells were incubated with the specific bitter ligands absinthin and 3ß-hydroxydihydrocostunolide, and calcium oscillation and relaxation were evaluated by calcium imaging and collagen assay, respectively, after a cholinergic stimulus. We show, for the first time, experimentally the presence and functionality of a type 2 bitter receptor in human skeletal muscle cells. Given the tendentially protective role of the bitter receptors starting from the oral cavity and following also in the other ectopic sites, and given its expression already at the myoblast level, we hypothesize that the bitter receptor can play an important role in the development, maintenance and in the protection of muscle tissue functions.

7.
J Colloid Interface Sci ; 652(Pt B): 1308-1324, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659303

RESUMEN

HYPOTHESIS: Implementation of tissue adhesives from natural sources endowed with good mechanical properties and underwater resistance still represents a challenging research goal. Inspired by the extraordinary wet adhesion properties of mussel byssus proteins resulting from interaction of catechol and amino residues, hydrogels from soy protein isolate (SPI) and selected polyphenols i.e. caffeic acid (CA), chlorogenic acid (CGA) and gallic acid (GA) under mild aerial oxidative conditions were prepared. EXPERIMENTS: The hydrogels were subjected to chemical assays, ATR FT-IR and EPR spectroscopy, rheological and morphological SEM analysis. Mechanical tests were carried out on hydrogels prepared by inclusion of agarose. Biological tests included evaluation of the antibacterial and wound healing activity, and hemocompatibility. FINDINGS: The decrease of free NH2 and SH groups of SPI, the EPR features, the good cohesive strength and excellent underwater resistance (15 days for SPI/GA) under conditions relevant to their use as surgical glues indicated an efficient interaction of the polyphenols with the protein in the hydrogels. The polyphenols greatly also improved the mechanical properties of the SPI/ agarose/polyphenols hydrogels. These latter proved biocompatible, hemocompatible, not harmful to skin, displayed durable adhesiveness and good water-vapour permeability. Excellent antibacterial properties and in some cases (SPI/CGA) a favourable wound healing activity on dermal fibroblasts was obtained.

8.
J Stomatol Oral Maxillofac Surg ; 124(6S): 101587, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37543211

RESUMEN

INTRODUCTION: The Anatomage Table is a modern device characterized by virtual reality functionality that may be used to enhance the teaching of human anatomy to medical and allied health students. The purpose of the present study was to use the virtual dissection table (3D Anatomage) as an additional tool for education and information in cases of metastases to the oral region. MATERIALS AND METHODS: The hospital database of Vercelli Hospital, Vercelli, Italy, was searched for metastases to the oral region. DICOM data of Computed tomography scans were retrieved and uploaded in the Anatomage Table device. The workstation was used to obtain images of the body surface, "dissection cuts," or "vascular reconstructions," modifying the filters. RESULTS: The reconstructed images of three cases of metastases to the oral region from pulmonary adenocarcinoma, pulmonary sarcomatoid carcinoma, and breast ductal infiltrative adenocarcinoma were produced and presented. Different filters were used. DISCUSSION: The use of Anatomage Table, a touch interactive anatomy virtual dissection table used in anatomy education, thanks to the application of different filters, may represent a promising resource both for patients and students.


Asunto(s)
Adenocarcinoma , Carcinoma , Humanos , Disección/educación , Cara , Tomografía Computarizada por Rayos X/métodos
9.
Environ Pollut ; 328: 121654, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080514

RESUMEN

There is an increase of application of Nickel in the form of nanoparticles (NiNPs) in several fields including modern metallurgy, bioengineering, and medicine. Such growth of the areas of application is actually accompanied with an increase of exposure to Nickel, thus an intensification of the negative effects, the most frequent being the allergic contact dermatitis. Indeed, due to their smaller size, and therefore their higher surface area, NiNPs can release more Ni ions compared to bulk material, that can penetrate and permeate through the skin. To reduce the Ni cutaneous penetration, barrier creams (BC) are applied on the skin surface. There is little information, however, on the efficiency of such commercial protective creams on decreasing Ni cutaneous penetration. For this reason, the objective of the current study was to investigate the protective role of one commercially available formulation for Ni (Nik-L-Block™ containing a chelating agent) and one moisturizing cream (Ceramol 311 basic cream without chelating agent), following exposure to NiNPs, using in vitro Franz cells, as well as the cytotoxicity of NiNPs in primary human dermal fibroblasts was studied. Our results demonstrated that although both tested formulations can decrease Ni accumulation in the skin (4.13 ± 1.74 µg/cm2 for Nik-L-Block™ and 7.14 ± 1.46 µg/cm2 for Ceramol 311 basic cream); there are significant differences between the two creams (p = 0.004). Based on the experimental evidence, we therefore conclude that the composition of such formulations has an imperative role for dermal uptake of Ni. Finally, NiNPs showed no cytotoxic effect on cultured human dermal fibroblasts after 24 and 72 h.


Asunto(s)
Nanopartículas , Níquel , Humanos , Níquel/toxicidad , Piel , Nanopartículas/toxicidad , Quelantes
10.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768766

RESUMEN

Cells of the cardiovascular system are physiologically exposed to a variety of mechanical forces fundamental for both cardiac development and functions. In this context, forces generated by actomyosin networks and those transmitted through focal adhesion (FA) complexes represent the key regulators of cellular behaviors in terms of cytoskeleton dynamism, cell adhesion, migration, differentiation, and tissue organization. In this study, we investigated the involvement of FAs on cardiomyocyte differentiation. In particular, vinculin and focal adhesion kinase (FAK) family, which are known to be involved in cardiac differentiation, were studied. Results revealed that differentiation conditions induce an upregulation of both FAK-Tyr397 and vinculin, resulting also in the translocation to the cell membrane. Moreover, the role of mechanical stress in contractile phenotype expression was investigated by applying a uniaxial mechanical stretching (5% substrate deformation, 1 Hz frequency). Morphological evaluation revealed that the cell shape showed a spindle shape and reoriented following the stretching direction. Substrate deformation resulted also in modification of the length and the number of vinculin-positive FAs. We can, therefore, suggest that mechanotransductive pathways, activated through FAs, are highly involved in cardiomyocyte differentiation, thus confirming their role during cytoskeleton rearrangement and cardiac myofilament maturation.


Asunto(s)
Adhesiones Focales , Adhesiones Focales/metabolismo , Vinculina/metabolismo , Adhesión Celular/fisiología , Membrana Celular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Diferenciación Celular
11.
Biomolecules ; 12(9)2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36139063

RESUMEN

Recent advancements in regenerative medicine have enhanced the development of biomaterials as multi-functional dressings, capable of accelerating wound healing and addressing the challenge of chronic wounds. Hydrogels obtained from decellularized tissues have a complex composition, comparable to the native extracellular environment, showing highly interesting characteristics for wound healing applications. In this study, a bovine pericardium decellularized extracellular matrix (dECM) hydrogel was characterized in terms of macromolecules content, and its immunomodulatory, angiogenic and wound healing potential has been evaluated. The polarization profile of human monocytes-derived macrophages seeded on dECM hydrogel was assessed by RT-qPCR. Angiogenic markers expression has been evaluated by Western blot and antibody array on cell lysates derived from endothelial cells cultured on dECM hydrogel, and a murine in vivo model of hindlimb ischemia was used to evaluate the angiogenic potential. Fibroblast migration was assessed by a transwell migration assay, and an in vivo murine wound healing model treated with dECM hydrogels was also used. The results showed a complex composition, of which the major component is collagen type I. The dECM hydrogel is biocompatible, able to drive M2 phenotype polarization, stimulate the expression of angiogenic markers in vitro, and prevent loss of functionality in hindlimb ischemia model. Furthermore, it drives fibroblast migration and shows ability to facilitate wound closure in vivo, demonstrating its great potential for regenerative applications.


Asunto(s)
Matriz Extracelular , Hidrogeles , Animales , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Bovinos , Colágeno Tipo I/metabolismo , Células Endoteliales , Matriz Extracelular/metabolismo , Humanos , Hidrogeles/metabolismo , Hidrogeles/farmacología , Ratones
12.
PLoS One ; 17(8): e0273036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36001607

RESUMEN

The key role played by host-microbiota interactions on human health, disease onset and progression, and on host response to treatments has increasingly emerged in the latest decades. Indeed, dysbiosis has been associated to several human diseases such as obesity, diabetes, cancer and also neurodegenerative disease, such as Parkinson, Huntington and Alzheimer's disease (AD), although whether causative, consequence or merely an epiphenomenon is still under investigation. In the present study, we performed a metabologenomic analysis of stool samples from a mouse model of AD, the 3xTgAD. We found a significant change in the microbiota of AD mice compared to WT, with a longitudinal divergence of the F/B ratio, a parameter suggesting a gut dysbiosis. Moreover, AD mice showed a significant decrease of some amino acids, while data integration revealed a dysregulated production of desaminotyrosine (DAT) and dihydro-3-coumaric acid. Collectively, our data show a dysregulated gut microbiota associated to the onset and progression of AD, also indicating that a dysbiosis can occur prior to significant clinical signs, evidenced by early SCFA alterations, compatible with gut inflammation.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Animales , Modelos Animales de Enfermedad , Disbiosis , Microbioma Gastrointestinal/fisiología , Humanos , Ratones
13.
Cell Calcium ; 103: 102548, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35144096

RESUMEN

Muscular diseases are characterized by a wide genetic diversity and the Ca2+-signalling machinery is often perturbed. Its characterization is therefore pivotal and requires appropriate cellular models. Muscle biopsies are the best approach but are invasive for the patient and difficult to justify if the biopsy is not for diagnostic purposes. To circumvent this, interest is mounting in urine-derived stem cells that can be differentiated into skeletal muscle cells. In the present study, we isolated stem cells from urine (USC) samples of healthy donors and differentiated them by MyoD lentiviral vector transduction into skeletal muscle cells (USC-SkMC). As expected, USCs and USC-SkMCs are characterized by a radically different pattern of expression of stem and skeletal muscle markers. Characterization of cells in the present manuscript focused on Ca2+-signalling. Undifferentiated and differentiated cells differed in the expression of key proteins involved in Ca2+-homeostasis and also displayed different Ca2+-responses to external stimuli, confirming that during differentiation there was a transition from a non-excitable to an excitable phenotype. In USCs, the main mechanism of calcium entry was IP3 dependent, suggesting a major involvement of receptor-operated Ca2+ entry. Indeed, U-73122 (a PLC inhibitor) significantly inhibited the Ca2+increase triggered by ATP both in calcium and calcium-free conditions. In USC-SkMCs both store- and receptor-operated calcium entry were active. Furthermore, a caffeine challenge led to Ca2+ release both in the presence or absence of extracellular calcium, which was inhibited by ryanodine, suggesting the presence and functionality of ryanodine receptors in USC-SkMCs. Lastly, the voltage-operated calcium channels are operative in USC-SkMCs, unlike in USCs, since stimulation with high concentration of KCl induced a significant calcium transient, partially reversed by verapamil. Our data therefore support the use of skeletal muscle cells derived from USCs as an easily amenable tool to investigate Ca2+-homeostasis, in particular in those (neuro)muscular diseases that lack valid alternative models.


Asunto(s)
Calcio , Células Madre , Calcio/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células Madre/metabolismo
14.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948110

RESUMEN

Cardiovascular diseases (CVDs), mainly ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and major contributors to disability worldwide. Despite their heterogeneity, almost all CVDs share a common feature: the endothelial dysfunction. This is defined as a loss of functionality in terms of anti-inflammatory, anti-thrombotic and vasodilatory abilities of endothelial cells (ECs). Endothelial function is greatly ensured by the mechanotransduction of shear forces, namely, endothelial wall shear stress (WSS). Low WSS is associated with endothelial dysfunction, representing the primary cause of atherosclerotic plaque formation and an important factor in plaque progression and remodeling. In this work, the role of factors released by ECs subjected to different magnitudes of shear stress driving the functionality of downstream endothelium has been evaluated. By means of a microfluidic system, HUVEC monolayers have been subjected to shear stress and the conditioned media collected to be used for the subsequent static culture. The results demonstrate that conditioned media retrieved from low shear stress experimental conditions (LSS-CM) induce the downregulation of endothelial nitric oxide synthase (eNOS) expression while upregulating peripheral blood mononuclear cell (PBMC) adhesion by means of higher levels of adhesion molecules such as E-selectin and ICAM-1. Moreover, LSS-CM demonstrated a significant angiogenic ability comparable to the inflammatory control media (TNFα-CM); thus, it is likely related to tissue suffering. We can therefore suggest that ECs stimulated at low shear stress (LSS) magnitudes are possibly involved in the paracrine induction of peripheral endothelial dysfunction, opening interesting insights into the pathogenetic mechanisms of coronary microvascular dysfunction.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Comunicación Paracrina , Resistencia al Corte , Estrés Mecánico , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/metabolismo , Inflamación/patología
15.
IUCrJ ; 8(Pt 6): 1024-1034, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804554

RESUMEN

Glycosyl-ation is the process of combining one or more glucose molecules (or other monosaccharides) with molecules of a different nature (which are therefore glycosyl-ated). In biochemistry, glycosyl-ation is catalyzed by several specific enzymes, and assumes considerable importance since it occurs mainly at the expense of proteins and phospho-lipids which are thus transformed into glycoproteins and glycolipids. Conversely, in diabetes and aging, glycation of proteins is a phenomenon of non-enzymatic nature and thus not easily controlled. Glycation of collagen distorts its structure, renders the extracellular matrix stiff and brittle and at the same time lowers the degradation susceptibility thereby preventing renewal. Based on models detailed in this paper and with parameters determined from experimental data, we describe the glycation of type 1 collagen in bovine pericardium derived bio-tissues, upon incubation in glucose and ribose. With arginine and lysine/hy-droxy-lysine amino acids as the primary sites of glycation and assuming that the topological polar surface area of the sugar molecules determines the glycation rates, we modelled the glycation as a function of time and determined the glycation rate and thus the progression of glycation as well as the resulting volume increase.

16.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502309

RESUMEN

Skeletal muscles represent 40% of body mass and its native regenerative capacity can be permanently lost after a traumatic injury, congenital diseases, or tumor ablation. The absence of physiological regeneration can hinder muscle repair preventing normal muscle tissue functions. To date, tissue engineering (TE) represents one promising option for treating muscle injuries and wasting. In particular, hydrogels derived from the decellularized extracellular matrix (dECM) are widely investigated in tissue engineering applications thanks to their essential role in guiding muscle regeneration. In this work, the myogenic potential of dECM substrate, obtained from decellularized bovine pericardium (Tissuegraft Srl), was evaluated in vitro using C2C12 murine muscle cells. To assess myotubes formation, the width, length, and fusion indexes were measured during the differentiation time course. Additionally, the ability of dECM to support myogenesis was assessed by measuring the expression of specific myogenic markers: α-smooth muscle actin (α-sma), myogenin, and myosin heavy chain (MHC). The results obtained suggest that the dECM niche was able to support and enhance the myogenic potential of C2C12 cells in comparison of those grown on a plastic standard surface. Thus, the use of extracellular matrix proteins, as biomaterial supports, could represent a promising therapeutic strategy for skeletal muscle tissue engineering.


Asunto(s)
Diferenciación Celular , Matriz Extracelular/fisiología , Desarrollo de Músculos , Mioblastos/citología , Pericardio/citología , Ingeniería de Tejidos/métodos , Animales , Bovinos , Hidrogeles/química , Ratones , Andamios del Tejido/química
17.
Biology (Basel) ; 10(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209277

RESUMEN

Inflammatory bowel disease (IBD) is a complex, chronic, and dysregulated inflammatory condition which etiology is still largely unknown. Its prognosis and disease progression are highly variable and unpredictable. IBD comprises several heterogeneous inflammatory conditions ranging from Ulcerative Colitis (UC) to Crohn's Disease (CD). Importantly, a definite, well-established, and effective clinical treatment for these pathologies is still lacking. The urgent need for treatment is further supported by the notion that patients affected by UC or CD are also at risk of developing cancer. Therefore, a deeper understanding of the molecular mechanisms at the basis of IBD development and progression is strictly required to design new and efficient therapeutic regimens. Although the development of animal models has undoubtedly facilitated the study of IBD, such in vivo approaches are often expensive and time-consuming. Here we propose an organ ex vivo culture (Gut-Ex-Vivo system, GEVS) based on colon from Balb/c mice cultivated in a dynamic condition, able to model the biochemical and morphological features of the mouse models exposed to DNBS (5-12 days), in 5 h. Indeed, upon DNBS exposure, we observed a dose-dependent: (i) up-regulation of the stress-related protein transglutaminase 2 (TG2); (ii) increased intestinal permeability associated with deregulated tight junction protein expression; (iii) increased expression of pro-inflammatory cytokines, such as TNFα, IFNγ, IL1ß, IL6, IL17A, and IL15; (iv) down-regulation of the anti-inflammatory IL10; and (v) induction of Endoplasmic Reticulum stress (ER stress), all markers of IBD. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of IBD, in a time- and cost-effective manner.

18.
IUCrJ ; 8(Pt 4): 621-632, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34258010

RESUMEN

Diseases like widespread diabetes or rare galactosemia may lead to high sugar concentrations in the human body, thereby promoting the formation of glycoconjugates. Glycation of collagen, i.e. the formation of glucose bridges, is nonenzymatic and therefore cannot be prevented in any other way than keeping the sugar level low. It relates to secondary diseases, abundantly occurring in aging populations and diabetics. However, little is known about the effects of glycation of collagen on the molecular level. We studied in vitro the effect of glycation, with d-glucose and d-galactose as well as d-ribose, on the structure of type 1 collagen by preparing decellularized matrices of bovine pericardia soaked in different sugar solutions, at increasing concentrations (0, 2.5, 5, 10, 20 and 40 mg ml-1), and incubated at 37°C for 3, 14, 30 and 90 days. The tissue samples were analyzed with small- and wide-angle X-ray scattering in scanning mode. We found that glucose and galactose produce similar changes in collagen, i.e. they mainly affect the lateral packing between macromolecules. However, ribose is much faster in glycation, provoking a larger effect on the lateral packing, but also seems to cause qualitatively different effects on the collagen structure.

19.
Cell Death Discov ; 7(1): 45, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712560

RESUMEN

Celiac disease (CD) is a complex immune-mediated chronic disease characterized by a consistent inflammation of the gastrointestinal tract induced by gluten intake in genetically predisposed individuals. Although initiated by the interaction between digestion-derived gliadin, a gluten component, peptides, and the intestinal epithelium, the disorder is highly complex and involving other components of the intestine, such as the immune system. Therefore, conventional model systems, mainly based on two- or three-dimension cell cultures and co-cultures, cannot fully recapitulate such a complex disease. The development of mouse models has facilitated the study of different interacting cell types involved in the disorder, together with the impact of environmental factors. However, such in vivo models are often expensive and time consuming. Here we propose an organ ex vivo culture (gut-ex-vivo system) based on small intestines from gluten-sensitive mice cultivated in a dynamic condition, able to fully recapitulate the biochemical and morphological features of the mouse model exposed to gliadin (4 weeks), in 16 h. Indeed, upon gliadin exposure, we observed: i) a down-regulation of cystic fibrosis transmembrane regulator (CFTR) and an up-regulation of transglutaminase 2 (TG2) at both mRNA and protein levels; ii) increased intestinal permeability associated with deregulated tight junction protein expression; iii) induction and production of pro-inflammatory cytokines such as interleukin (IL)-15, IL-17 and interferon gamma (IFNγ); and iv) consistent alteration of intestinal epithelium/villi morphology. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of CD, test new or repurposed molecules to accelerate the search for new treatments, and to study the impact of the microbiome and derived metabolites, in a time- and cost- effective manner.

20.
Biomolecules ; 10(12)2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266333

RESUMEN

In the field of artificial prostheses for damaged vessel replacement, polymeric scaffolds showing the right combination of mechanical performance, biocompatibility, and biodegradability are still demanded. In the present work, poly(butylene-co-triethylene trans-1,4-cyclohexanedicarboxylate), a biodegradable random aliphatic copolyester, has been synthesized and electrospun in form of aligned and random fibers properly designed for vascular applications. The obtained materials were analyzed through tensile and dynamic-mechanical tests, the latter performed under conditions simulating the mechanical contraction of vascular tissue. Furthermore, the in vitro biological characterization, in terms of hemocompatibility and cytocompatibility in static and dynamic conditions, was also carried out. The mechanical properties of the investigated scaffolds fit within the range of physiological properties for medium- and small-caliber blood vessels, and the aligned scaffolds displayed a strain-stiffening behavior typical of the blood vessels. Furthermore, all the produced scaffolds showed constant storage and loss moduli in the investigated timeframe (24 h), demonstrating the stability of the scaffolds under the applied conditions of mechanical deformation. The biological characterization highlighted that the mats showed high hemocompatibility and low probability of thrombus formation; finally, the cytocompatibility tests demonstrated that cyclic stretch of electrospun fibers increased endothelial cell activity and proliferation, in particular on aligned scaffolds.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Elastómeros/química , Elastómeros/farmacología , Electricidad , Células Endoteliales/citología , Poliésteres/química , Polietilenglicoles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Endoteliales/efectos de los fármacos , Humanos , Ensayo de Materiales , Mecanotransducción Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...